Learning Resource Center - Math Center

Factoring Flowchart

Is it a Difference of Squares? $A^2 - B^2 = (A - B)(A + B)$

Examples:

$$x^{2} - 25 = (x - 5)(x + 5)$$
$$9x^{2} - 64 = (3x - 8)(3x + 8)$$

Factor into two Binomials

([]]

Examples:

$$x^{2} - 4x - 21 = (x - 7)(x + 3)$$
$$10x^{2} - 11x - 3 = (2x - 1)(5x + 3)$$

Factor by Grouping

Example:
$$6ab + 2b + 9a + 3$$

= $(6ab + 2b) + (9a + 3)$
= $2b(3a + 1) + 3(3a + 1)$
= $(3a + 1) + (2b + 3)$

By Difference of Squares

Example: $x^2 - 10x + 25 - y^2$

$$\underbrace{x^2 - 10x + 25} - y^2$$

$$= (x-5)^2 - y^2$$

= $(x-5-y)(x-5+y)$

Example:
$$x^2 - y^2 + 6y - 9$$

$$= x^{2} - (y^{2} - 6y + 9)$$

$$= x^{2} - (y - 3)^{2}$$

$$= (x - y + 3)(x + y - 3)$$

Is it a Difference of Cubes?

$$A^3 - B^3 = (A - B)(A^2 + AB + B^2)$$

Examples:

$$x^3 - 27 = (x - 3)(x^2 + 3x + 9)$$

8x³ - 125 = (2x - 5)(4x² + 10x + 25)

Is it a Sum of Cubes?

$$A^3 + B^3 = (A + B)(A^2 - AB + B^2)$$

Examples:

$$x^3 + 64 = (x+4)(x^2 - 4x + 16)$$
$$125x^3 + 1 = (5x+1)(25x^2 - 5x + 1)$$

Check each factor. Can it be factored again?

If the answer is **YES**, repeat the process

If the answer is **NO**, write the final answer as a product of all the factors and the GCF